
Highly Scalable Metadata 
Search and Indexing

Ethan L. Miller
Andrew Leung • Tim Bisson* • Minglong Shao* • Shankar Pasupathy*

Storage Systems Research Center
University of California, Santa Cruz

*NetApp



Challenge:
scalable search mechanisms
✦ Indexing is a critical issue

• Speed and effectiveness of search limit the usability of very large scale 
storage systems

✦ Very large scale indexes are often resource-intensive
• Google and Yahoo have web-scale indexes, but they use thousands of 

processors to do it!
• Performance is high (memory resident indexes)

✦ Indexing can take advantage of locality
• Users typically aren’t searching over the whole file system
• Users may not have permissions to see everything

✦ Challenges
• Building indexes that scale
• Building less resource-intensive indexes
• Building indexes that leverage locality
• Incorporating security into indexes
• Integrity: failure of a centralized index can be difficult to recover from

2



Challenge:
gathering metadata for indexes
✦ Indexes are only as good as the information that goes 

into them
✦ Critical types of metadata include

• Content
- Domain-specific techniques for gathering it
- May need domain-specific search mechanisms

• Provenance
- How was the data generated?
- On what data and programs does this file depend?

✦ Challenges
• How can provenance be tracked efficiently?
• How can domain-specific metadata be handled?
- Gathered?
- Indexed as part of the file system?

3



Challenge:
data mining in mass storage
✦ Large storage systems contain a lot of useful data

• Can be difficult to fully utilize
✦ Traditional data mining techniques may not be 

effective
• Infeasible to read out the entire storage system for data 

mining
✦ Two potential approaches

• Index the data when it’s written to storage, and use the 
indexes for mining

• Distribute computation to the storage devices, allowing 
them to run in parallel

4



Our approach:partitioned indexes
✦ Break up single large index into many smaller indexes

• Each subindex covers a manageable amount of data
• Individual subindexes can be searched quickly
• Individual subindexes can be rebuilt after corruption (or 

to reflect incremental changes)

✦ Problem: can’t search all subindexes for every query
• No better than what we do today (and maybe worse)

✦ Problem: subindex search needs to be efficient
• Can’t cache all subindexes in memory

✦ Leverage locality?

5



Spyglass design
✦ Partition file system hierarchy 

by subtree
• Each subtree is an independent 

subindex
✦ Summarize contents of each 

subindex
• Quickly rule out entire 

subindexes that can’t satisfy the 
query

✦ Log incremental changes
• Rebuild index when there are 

“enough” changes
✦ Integrity is much easier

• Rebuild subindex, not entire 
index

6

T0

Spyglass

indexer

T1 T2 T3

Baseline

index

T0 T2T0 T0 T2 T3

Incremental

indexes

/

home proj usr

aleung elm distmeta pergamum include

thesis scidac src experiments

1 0 1 1 0 1 0 1•••

doc xls c

ppt

py pl h ppt

jpg

mov

hash(file extension) mod b

1 1 0 1 0 0 1 1•••

<1 1–4 5–31 32–

127

128–

255

256–

511

100MB–

500MB

>500MB

hash(file size)



Current status
✦ Prototype implemented for attributes

• File size, type, owner, etc.
• Content being done now...

✦ Used k-d trees for individual indexes
• Straightforward to optimize tree structure for each individual 

subtree
• Recently-accessed subtrees cached in memory

- Only takes a few milliseconds to read and search a tree
✦ Implementation tested using 300 million files crawled at 

a “large storage company”
• Locality really helps!

✦ Performance is very good
• Compared against standard databases
• Queries on Spyglass were 10–6000 times faster!

7



Ongoing research
✦ Extending attribute-based search to content

• Will locality help as much?
• Will compression help to reduce the size of the indexes?

✦ Scaling indexes to trillions of files
• Existing systems (databases or otherwise) can’t handle 

such large systems without massive amounts of hardware
• Will summarization work with millions of indexes?

✦ Non-hierarchical file systems
• Use similarity (or something else) to group files?

- Talk on this earlier today
✦ Extending indexing to archives

8


